Kotani Lyapunov Indices Determine Absolutely Continuous Spectra

[1]

J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. Jour., 50 (1983), 369-391. doi: 10.1215/S0012-7094-83-05016-0.

[2]

M. Bebutov, On Dynamical Systems in the Space of Continuous Functions, Bull. Inst. Mat. Moskov. Gos. Univ. 2 (1940).

[3]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc Graw-Hill, New York, 1955.

[4]

W. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629. Springer-Verlag, Berlin-New York, 1978.

[5]

W. Craig, The trace formula for Schrödinger operators on the line, Comm. Math. Phys., 126 (1989), 379-407. doi: 10.1007/BF02125131.

[6]

W. Craig and B. Simon, Subharmonicity of the Lyapunov index, Duke Math. Jour., 50 (1983), 551-560. doi: 10.1215/S0012-7094-83-05025-1.

[7]

D. Damanik and P. Yuditskii, Counterexamples to the Kotani-Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces, Adv. Math., 293 (2016), 738-781, arXiv:1405.6342. doi: 10.1016/j.aim.2016.02.023.

[8]

C. De Concini and R. Johnson, The algebraic-geometric AKNS potentials, Ergod. Th. & Dynam. Sys., 7 (1987), 1-24. doi: 10.1017/S0143385700003783.

[9]

B. Dubrovin, S. Novikov and V. Matveev, Nonlinear equations of Korteweg-de Vries type, finite zone linear operators and Abelian varieties, Russ. Math. Surveys, 31 (1976), 55-136.

[10]

P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970.

[11]

R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969.

[12]

A. Eremenko and P. Yuditskii, Comb functions, Contemp. Math., 578 (2012), 99-118. doi: 10.1090/conm/578/11472.

[13]

F. Gesztesy and B. Simon, The xi function, Acta Matematica, 176 (1996), 49-71. doi: 10.1007/BF02547335.

[14]

F. Gesztesy and P. Yuditskii, Spectral properties of a class of reflectionless Schrödinger operators, Jour. Func. Anal., 241 (2006), 486-527. doi: 10.1016/j.jfa.2006.08.006.

[15]

I. Goldsheid, S. Molchanov and L. Pastur, A random homogeneous Schrödinger operator has pure point spectrum, Funk. Anal. i Prilozh., 11 (1977), 1-10, 96. doi: 10.1007/BF01135526.

[16]

M. Hasumi, Hardy Classes on Infinitely Connected Riemann Surfaces, Lecture Notes in Math. 1027, Springer-Verlag, Berlin, 1983.

[17]

L. Helms, Introduction to Potential Theory, Robert E. Krieger Publ. Co., Huntington USA, 1975.

[18]

R. Johnson, The recurrent Hill's equation, Jour. Diff. Eqns, 46 (1982), 165-193. doi: 10.1016/0022-0396(82)90114-0.

[19]

R. Johnson, A review of recent work on almost periodic differential and difference operators, Acta Applicandae Mathematicae, 1 (1983), 241-261. doi: 10.1007/BF00046601.

[20]

R. Johnson, Exponential dichotomy, rotation number and linear differential equations with bounded coefficients, Jour. Diff. Eqns., 61 (1986), 54-78. doi: 10.1016/0022-0396(86)90125-7.

[21]

R. Johnson, Lyapunov numbers for the almost-periodic Schroedinger equation, Illinois Jour. Math., 28 (1984), 397-419.

[22]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438. doi: 10.1007/BF01208484.

[23]

R. Johnson and L. Zampogni, Some remarks concerning reflectionless Sturm-Liouville potentials, Stoch. and Dynamics, 8 (2008), 413-449. doi: 10.1142/S0219493708002391.

[24]

R. Johnson and L. Zampogni, Remarks on a paper of Kotani concerning generalized reflectionless Schrödinger potentials, Discr. Cont. Dynam. Sys. B, 14 (2010), 559-586. doi: 10.3934/dcdsb.2010.14.559.

[25]

R. Johnson and L. Zampogni, Remarks on the generalized reflectionless Schrödinger potentials, Jour. Dynam. Diff. Eqns., (2015), 1-29. doi: 10.1007/s10884-014-9424-8.

[26]

S. Kotani, Lyapunov indices determine absolutely continuous spectrum of stationary random Schrödinger operators, Proc. Taniguchi Symp. SA, Katata, (1985), 219-250.

[27]

S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos Solitons and Fractals, 8 (1997), 1817-1854. doi: 10.1016/S0960-0779(97)00042-8.

[28]

S. Kotani, KdV flow on generalized reflectionless Schrödinger potentials, Jour. Math. Phys., Anal., Geom., 4 (2008), 490-528, 574.

[29]

D. Lundina, Compactness of the set of reflectionless potentials, Funk. Anal. i Prilozh., 44 (1985), 55-66.

[30]

V. Marchenko, The Cauchy problem for the KdV equation with non-decreasing initial data, in What is Integrability?, Springer series in Nonlinear Dynamics, ed. V. Zakharov, Springer-Verlag, Berlin, 1991, 273-318.

[31]

H. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math., 30 (1975), 217-274. doi: 10.1007/BF01425567.

[32]

J. Moser, An example of a Schrödinger operator with almost periodic potential and nowhere dense spectrum, Helv. Math. Acta, 56 (1981), 198-224. doi: 10.1007/BF02566210.

[33]

V. Nemytskii and V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, 1960.

[34]

V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231.

[35]

L. Pastur, Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196. doi: 10.1007/BF01222516.

[36]

C. Remling, Topological properties of reflectionelss Jacobi matrices, J. Approx. Theory, 168 (2013), 1-17. doi: 10.1016/j.jat.2012.12.009.

[37]

R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems II, Jour. Diff. Eqns, 22 (1976), 478-496. doi: 10.1016/0022-0396(76)90042-5.

[38]

M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, North-Holland Mathematics Studies, 81 (1983), 259-271. doi: 10.1016/S0304-0208(08)72096-6.

[39]

G. Segal and G. Wilson, {Loop groups and equations of K-dV type, Publ. IHES, 61 (1985), 5-65.

[40]

B. Simon, Almost periodic Schrödinger operators: A review, Adv. Appl. Math., 3 (1982), 463-490. doi: 10.1016/S0196-8858(82)80018-3.

[41]

B. Simon, A new approach to inverse spectral theory I. Fundamental formalism, Annals of Math., 150 (1999), 1029-1057. doi: 10.2307/121061.

[42]

M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions, Jour. Geom. Anal., 7 (1997), 387-435. doi: 10.1007/BF02921627.

[43]

M. Sodin and P. Yuditskii, Almost periodic Schrödinger operators with Cantor homogeneous spectrum, Comment. Math. Helv., 70 (1995), 639-658. doi: 10.1007/BF02566026.

[44]

H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Annalen, 68 (1910), 220-269. doi: 10.1007/BF01474161.

farrellyource1936.blogspot.com

Source: https://www.aimsciences.org/article/doi/10.3934/dcdss.2016046

0 Response to "Kotani Lyapunov Indices Determine Absolutely Continuous Spectra"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel